

Northeast Wisconsin Intermodal Freight Facility Study

Northeast Wisconsin Intermodal Summit May 17, 2022

Acknowledgements

Thank you to the Steering Committee and participating consultees for their generous contributions of time and thought

Presentation Agenda

Project Background

Feasibility of Intermodal Service

Next Steps for Service Development

Historic Intermodal Service

Northeast Wisconsin formerly had intermodal terminals in Green Bay, and Neenah. Additional terminals existed in Stevens Point and Milwaukee.

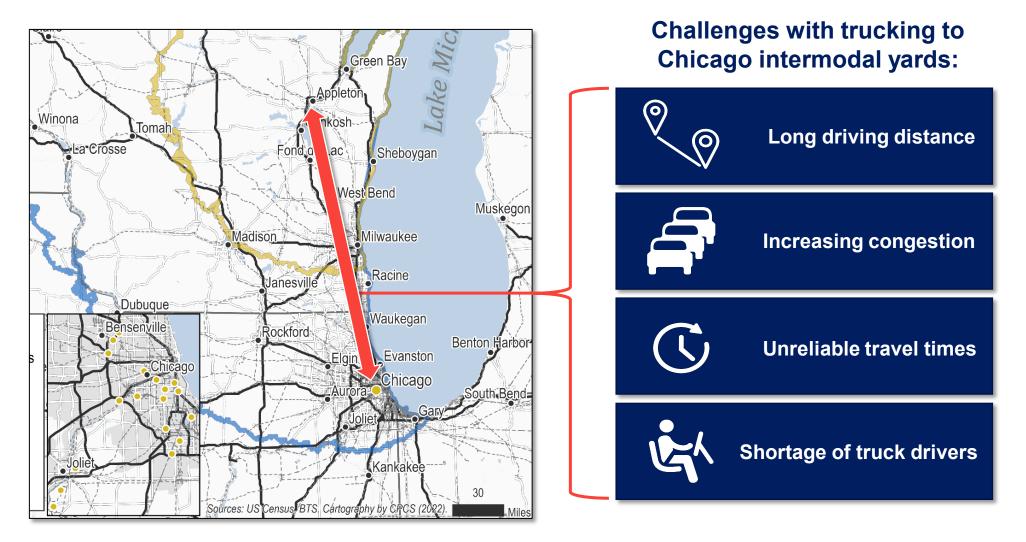
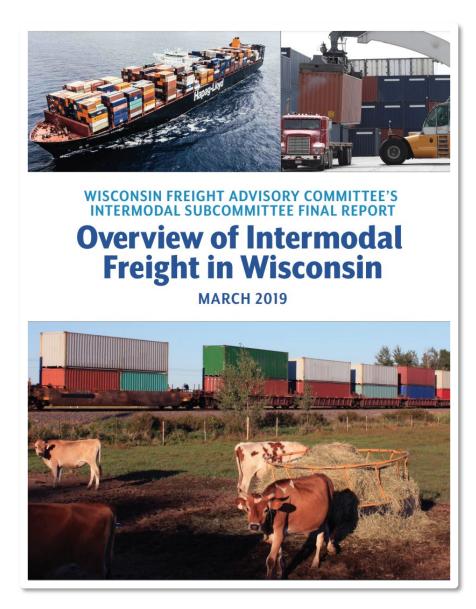


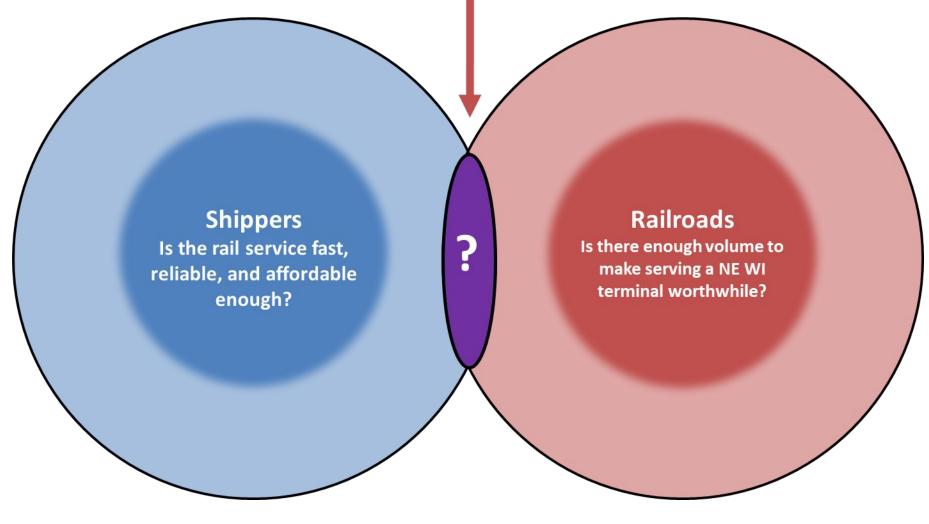
Image: DeWitt LLP

4 >


Modern Challenges in Wisconsin

The closure of intermodal terminals in Wisconsin has led to higher shipping costs and lower service reliability for area businesses.

Study Background


The Wisconsin Freight Advisory Committee's intermodal report was key to the creation of this study.

Improving Information for Development

This study sought to understand feasibility for service development from multiple perspectives, and identify shared interests:

Project Background

Feasibility of Intermodal Service

Next Steps for Service Development

Summary of Findings

Intermodal service has potential value for regional users and warrants further effort to continue development. However, there are challenges with rail service.

Market Feasibility

A Northeast Wisconsin-based intermodal can be a competitive option for shippers from a time and cost standpoint.

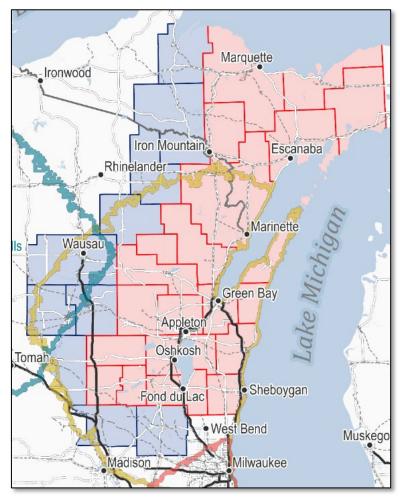
Location Feasibility

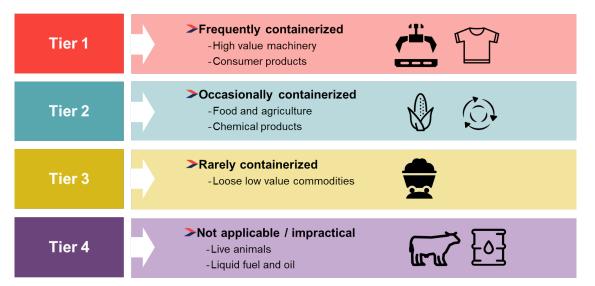
There are adequate areas available for potential intermodal terminal development.

Rail Service Feasibility

There are rail service challenges: load balance, connections to routes east-west, short-haul connections, and capacity constraints.

Market Feasibility: Total Logistics Cost Model

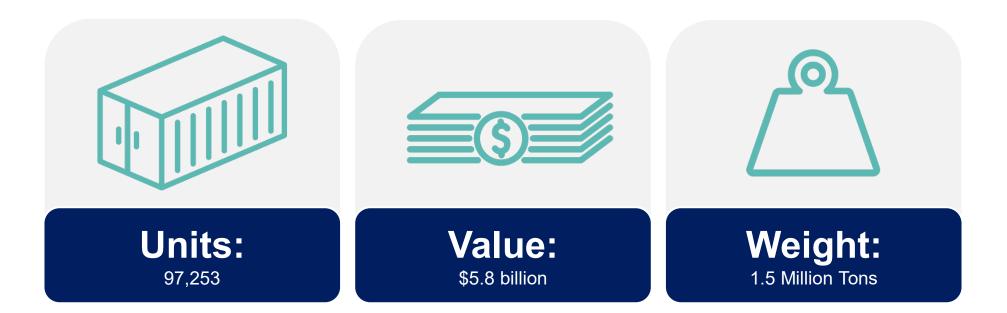

TLC model compares all-in costs of shipping through NE WI intermodal service versus drayage to Chicago or all-truck transportation.


Market Feasibility: Model Setup

The model and analysis of demand is based on a defined market area, and common types of intermodal-eligible goods.

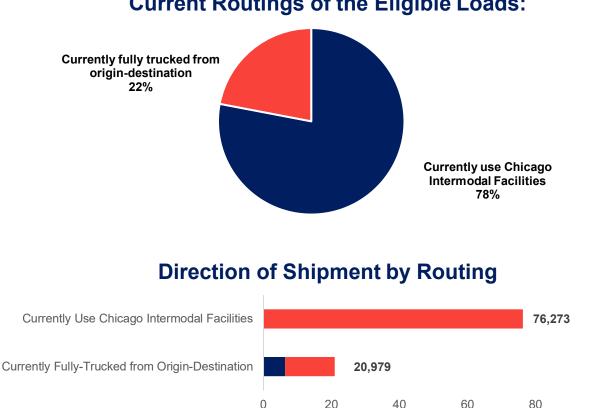
1. Market Area:

2. Intermodal-Eligible Commodities:



3. Intermodal-Eligible Lanes: Lanes of 600 miles or longer between origin and destination

Market Feasibility: Potential Market Demand


Over 97,000 shipments to and from NE Wisconsin could be costeffectively routed via a local intermodal facility

Market Feasibility: Market Demand

Most of the region's intermodal "eligible" shipments are outbound: a potential challenge is balancing loads in and out.

■ Inbound ■ Outbound

Current Routings of the Eligible Loads:

100

Thousands of Units

Market Feasibility: Market Demand

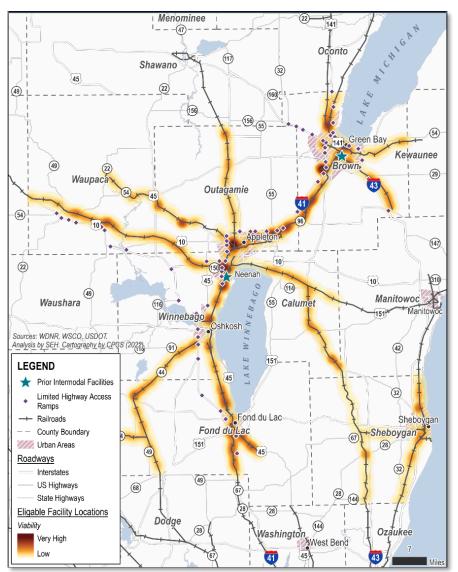
There is sufficient market size to support establishment of a small "starter" intermodal facility handling 25 containers/day.

Major Types of Cargo:

Paper Products

Plastic Products

Metalwork

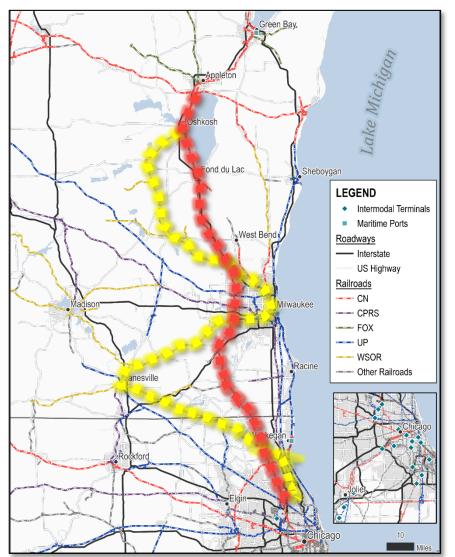


Food Products

Location Feasibility

Multiple areas are feasible for development, and a facility is estimated to cost \$3 million to construct

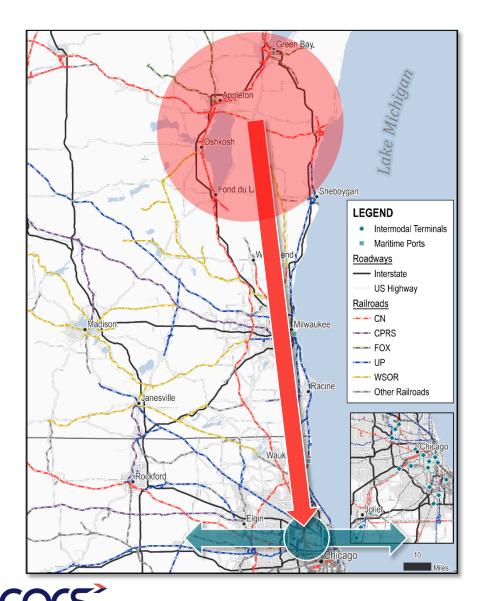
"Phase I" Facility Similar to Arcadia, WI Capacity: 25 containers per day Estimated cost: \$3.0 million*


Notable Design Elements:

- 5 3-unit 53' long double-stack intermodal cars
- 950 ft of track
- 1 manual mainline turnout
- 65 ft loading/offloading space adjacent to tracks for maneuvering reach stacker
- 2 weeks of container storage (250 containers)

*Cost estimate does not include land

Rail Service Options


CN and Watco provide the most-significant connections out of the region, and would be key stakeholders for service development

- > Railroads with connections to the rest of the US:
 - Canadian National (CN)
 - Watco (Wisconsin and Southern)
 - Union Pacific Shoreline subdivision
- Partnership with other major railroads is a key factor for development:
 - Need to move goods east-west
 - CN and Watco do not have east-west lines
 - Short-haul truck drayage between Chicago terminals is expensive, unreliable
 - Conclusion: need "steel wheel" interchange with other RRs

Rail Service Challenges

Securing railroad support for intermodal service may be difficult due to multiple rail-related challenges

- > Challenges with rail service:
 - Imbalanced loads in and out
 - Proximity to Chicago's terminal cluster
 - Short-haul movements on long-haul RRs
 - Capacity limitations on lines to Chicago
 - Existing traffic volume, track agreements
 - Infrastructure limitations
- > Future opportunities for development:
 - Sustainability case for intermodal
 - "Just in Case" inventory management
 - Railroad "pivot to growth"

Feasibility Recap

Locally-based intermodal service has the potential to be successful in Northeast Wisconsin, but needs to overcome challenges associated with rail service

Source: DeWitt LLP

Project Background

Feasibility of Intermodal Service

Next Steps for Service Development

Building a Business Case for Service

This study is just the start: development is a sustained process that needs to be driven by trusted local partners

Identifying Project Champions

A local champion needs to continue building a business case for intermodal service

- Project champions are *trusted* public and private partners who can continue building a business case to engage railroads. Examples:
 - Anchor tenants: large manufacturing firms
 - Aggregators: third-party logistics firms, other service providers
 - Marketers: regional economic development agencies, third-party development firms

Trust is key: project champion will need to hold and aggregate confidential data and manage relationships with multiple companies

Source: DeWitt LLP

Examples of Prior Development

Case studies from this study provide guidance for future work

- > Examples of project champions for other developments:
 - Anchor Tenants: Chippewa Falls (Menards) and Arcadia (Ashley Furniture)
 - Aggregator: Duluth Cargo Connect
 - Marketer: Shell Rock, IA (intermodal marketing and development firm + anchor)
- > Lessons learned from other developments:
 - Don't assume "build it and they will come" service needs to have sound business case
 - Development is a multi-year process sustained engagement needed
 - Public funding is common for facilities' infrastructure investments

ന്റ്രാ

Source: Duluth Cargo Connect

Securing Shipper Commitments

The TLC model shows demand for service, but firmer, specific commitments are needed to engage railroads

- This project sought real-world data through consultations, but confidentiality requirements and limited responses constrained the application of the data
- Needed information:
 - Expected volumes and frequency of service
 - Preferred pricing and travel times
 - Specific lanes need to be identified, for engagement with other Class I railroads

Source: DeWitt LLP

Soliciting Railroad Commitments

NE Wisconsin will require a new model to develop rail intermodal service, with short haul considerations

- Rail service is a significant challenge for intermodal development current geographic position and demand character does not align well with existing Class I business models
- >Partnership is needed with Class I railroads elsewhere in WI, IL
- > Potential routes or partnerships for further exploration:
 - CN-operated short-haul to Chicago
 - Watco-supported terminal with CN service to Chicago
 - Watco terminal and Watco trains on CN track to Chicago
 - WSOR service via Milwaukee, Janesville, Metra tracks
 - LINCS Local Intermodal Connections concept

Successful development will require the sustained engagement of a community of regional stakeholders like you.

Today's summit is an opportunity to build that community!

Why are you interested in intermodal service?

- Cost improvements?
- >Reliability improvements?
- >New business opportunities?

What do you see as your role in supporting development?

- >Building and organizing the intermodal community?
- >Sharing information to build a business case?

Thank You!

Eric Oberhart Project Manager E: <u>eoberhart@cpcstrans.com</u>

P: 815-345-1022

Case Study Results

Common Attributes of Prior Intermodal Facilities

Strong base of inbound imports as a starting point

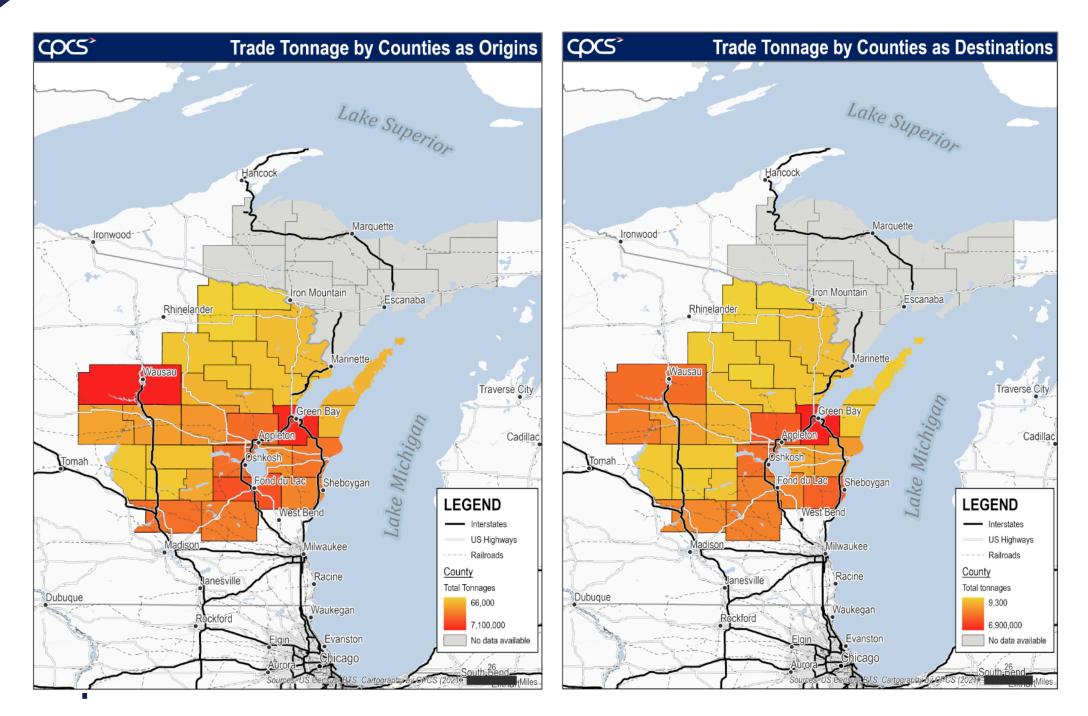
Balanced Flows – agricultural products as backhaul

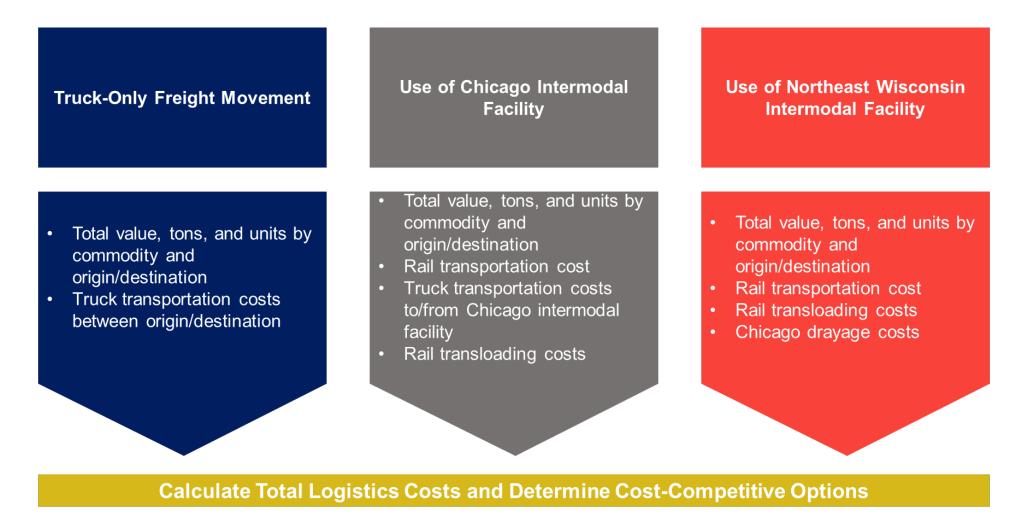
Anchor tenants or logistics firms to drive project forward

Support and partnership with a Class I railroad

Co-location of value-added logistics services

Domestic containerized shipping often developed later as an add-on

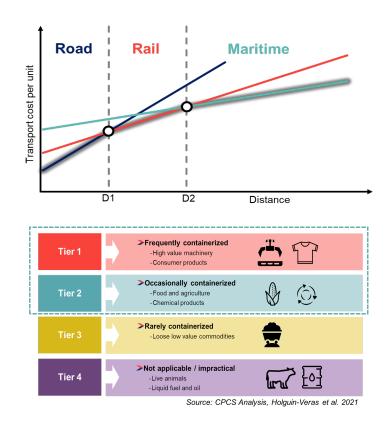




Market Demand: Hotspots

Market Demand: TLC Routes

Logistics costs were modeled for 3 routes:



Market Demand Estimates

Total Logistics Cost Model Steps:

- Applied intermodal-eligible trade lanes.
- Applied commodities eligible for containerization.
- Determined freight costs for all NE WI trade lanes.
- Modeled truck and rail travel times for all NE WI trade lanes.
- Filtered commodity flows based on freight costs.
- Filtered commodity flows based on truck and rail travel times.
- Estimating potential market size and capture rates.

Component	Scenario 1: Fully Truck from Origin-Destination Cost	Scenario 2: Use of Chicago IMX Facility Cost	Scenario 3: Use of Northeast Wisconsin IMX Facility Cost
Northeast Wisconsin- Chicago Cost	Drayage to Chicago: Inbound or Outbound Dry van rate x mileage	Drayage to Chicago: Inbound or Outbound Dry van rate x mileage	IMX Rail to Chicago: Inbound or Outbound Intermodal rate x mileage
Rail Fees	N/A	Chicago Intermodal Fees: International or Domestic Container Handling / Transloading Costs	Northeast Wisconsin Intermodal Fees and Chicago Drayage Fee: International or Domestic Container Handling / Transloading Costs + Local Chicago Drayage Fee
Chicago- Origin/Destination Cost	Drayage to Origin/Destination: Inbound or Outbound Dry van rate x mileage	IMX Rail to Origin/Destination: Inbound or Outbound Intermodal rate x mileage	IMX Rail to Origin/Destination: Inbound or Outbound Intermodal rate x mileage

Cost Components for Three Scenarios:

Market Demand: TLC Model

Total Logistics Cost model reflects transportation decisionmaking process.

Multiple variables influence transportation costs:

Variable	Description	
Commodity	The commodity shipped	
Origin	The origin of the commodity shipped	
Origin Mode	The mode of transportation at the origin of the shipment	
Destination Mode	The mode of transportation at the destination of the shipment	
Destination	The destination of the commodity shipped	
Unit	The units for the specific shipment	
Value	The value for the specific shipment	
Tonnage	The weight for the specific shipment	
Dry Van Rate	The cost of shipment per mile between the origin and destination by dry van	
Intermodal Rail Rate	The cost of shipment per mile between the origin and destination by intermodal rail	
Truck Mileage	The distance by truck directly between the origin and destination	
Intermodal/Transloading Cost	The commodity-specific cost of handling/transloading material between modes	
Drayage Cost	The cost of draying material between one facility and another	
Shipment Time	The average number of days between origin and destination by mode	

